
International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 725
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Theoretic Metrics for Measuring the Quality of
Software

Ashutosh Lahariya, Aman Jain, Rosedeep Singh, Rachana Nemade

Abstract—We present in this paper a new set of metrics that measure the quality of modularization of a non-object-oriented software system. We have

proposed a set of design principles to capture the notion of modularity and defined metrics centered around these princ iples. These metrics characterize
the software from a variety of perspectives: structural, architectural, and notions such as the similarity of purpose and commonality of goals. (By

structural, we are referring to intermodule coupling-based notions, and by architectural, we mean the horizontal layering of modules in large software
systems.) We employ the notion of API (Application Programming Interface) as the basis for our structural metrics. The rest of the metrics we present
are in support of those that are based on API. Some of the important support metrics include those that characterize each module on the basis of the

similarity of purpose of the services offered by the module. These metrics are based on information-theoretic principles. We tested our metrics on some
popular open-source systems and some large legacy-code business applications. To validate the metrics, we compared the results obtained on human-
modularized versions of the software (as created by the developers of the software) with those obtained on randomized versions of the code. For
randomized versions, the assignment of the individual functions to modules was randomized.

Index Terms — Metrics/measurement, modules and interfaces, information theory, distribution, maintenance and enhancement, maintainability,

coupling, layered architecture.

—————————— —————————

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 726
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

1 Introduction
MUCH work has been done during the last several years on
automatic approaches for code reorganization.
Fundamental to any attempt at code reorganization is the
division of the software into modules, publication of the
API (Application Programming Interface) for the modules,
and then requiring that the modules access each other’s
resources only through the published interfaces.
Our ongoing effort, from which we draw the work reported
here, is focused on the case of reorganization of legacy
software, consisting of millions of line of non-object-
oriented code that was never modularized or poorly
modularized to begin with. We can think of the problem as
reorganization of millions of lines of code residing in
thousands of files in hundreds of directories into modules,

Where each module is formed by grouping a set of entities
such as files, functions, data structures and variables into a
logically cohesive unit. Furthermore, each module makes
itself available to the other modules (and to the rest of the
world) through a published API. The work we report here
addresses the fundamental issue of how to measure the
quality of a given modularization of the software.

————————————————

 Ashutosh Lahariya, Aman Jain and Rosedeep Singh is currently pursuing
BE in computer engineering in University Of Pune , India, MO-
+919049199333.E-mail:ashu_lahariya@yahoo.co.in,amanjainer@gmail
.com, singhrosedip@gmail.com

 Rachana Nemade is a professor of computer engineering at MIT AOE,Pune
and is currently pursuing ME in computer engineering at North
Maharashta University , India, MO- +918600025675. E-mail:
nemade_rachana@rediffmail.com

Note that modularization quality is not synonymous with
modularization correctness. Obviously, after software has
been modularized and the API of each of the modules
published, the correctness can be established by checking
function call dependencies at compile time and at runtime.
If all intermodule function calls are routed through the
published API, the modularization is correct. As a
theoretical extreme, retaining all of the software in a single
monolithic module is a correct modularization though it is
not an acceptable solution. On the other hand, the quality of
modularization has more to do with partitioning software
into more maintainable (and more easily extendible)
modules on the basis of the cohesiveness of the service
provided by each module. Ideally, while containing all of
the major functions that directly contribute to a specific
service vise the other modules, each module would also
contain all of the ancillary functions and the data structures
if they are only needed in that module. Capturing these
“cohesive services” and“ ancillary support” criteria into a
set of metrics is an important goal of our research. The
work that we report here is a step in that direction.

More specifically, we present in this work a set of metrics
that measure in different ways the interactions between the
different modules of a software system. It is important to
realize that metrics that only analyze intermodal
interactions cannot exist in isolation from other metrics that
measure the quality of a given partitioning of the code. To
explain this point, it is not very useful to partition a
software system consisting of a couple of million lines of
code into two modules, each consisting of a million lines of
code, and justify the two large modules purely on the basis
of function call routing through the published APIs for the
two modules. Each module would still be much too large
from the standpoint of code maintenance and code
extension. The module interaction metrics must therefore
come with a sibling set of metrics that record other
desirable properties of the code. The metrics we present in
Section 4, while focusing primarily on module interactions,
also include other necessary measures of the quality of a
given partitioning of code.
The paper is organized as follows: In the next section, we
provide a brief review of the literature relevant to our
work. In Section 3, we describe the notion of modularity of
a system and enunciate a set of design principles that
should be adhered to in a well-modularized system. Next,
in Section 4, we define a set of metrics based on the
structural aspects of intermodule relationships.

2 PREVIOUS WORK ON SOFTWARE METRICS

RELEVANT TO OUR CONTRIBUTION
Some of the earliest contributions to software metrics deal
with the measurement of code complexity [1], [2] and
maintainability [3] based on the complexity measures
proposed in [1], [2]. From the standpoint of code modular-
ization, some of the earliest software metrics are based on
the notions of coupling and cohesion [4], [5]. Low inter-
module coupling, high intramodule cohesion, and low
complexity have always been deemed to be important
attributes of any modularized software.
The above-mentioned early developments in software
metrics naturally led several researchers to question their
theoretical validity. Theoretical validation implies
conformance to a set of agreed-upon principles and these
principles are usually stated in the form of a theoretical
framework. In 1988, Weyuker [6] proposed a set of
properties to be satisfied by software complexity metrics.
Many subsequent contributions discussed these properties
from the standpoint of sufficiency/necessity and whether
or not they could be supported by more formal under-
pinnings. See for example [7], [8], and [9], and the citations
contained therein. Other notable software metrics valida-
tion frameworks include those by Kitchenham et al. [10]
(see also Fenton and Pfleeger [11]), who have borrowed the
needed principles from the classical measurement theory.
However, this framework was found wanting by Morsaca
et al. [12] with regard to how the scale types used for

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 727
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

attribute measurements were constrained.
With regard to modularity, Briand et al. [8] have given us a
generic formalization of such fundamental notions as
module and system, and such metrical notions as coupling,
cohesion, and complexity. Their formalization is generic in
the sense that it is not limited to any specific style of
programming. The authors have also mapped several well-
known metrics such as Halstead length [1] and cyclomatic
complexity [2], as well as coupling and cohesion metrics,
into this framework. Frameworks such as those proposed
by Briand et al. [8] are important because they educate us
about the fundamental criteria that must be fulfilled by the
various metrics. The work reported in [8] was extended by
the authors in [13]; in this more recent work, they have
proposed a framework for a goal-driven definition of
software measures.
The early work on software metrics was followed by their
reformulation for the object-oriented case. Researchers
came up with coupling, cohesion, and complexity metrics
that measured the various quality attributes of OO soft-
ware. These measures were primarily at the level of how
the individual classes were designed from the standpoint of
how many methods were packed into the classes, the depth
of the inheritance tree, the inheritance fan-out, couplings
between objects (CBO) created by one object invoking a
method on another object, etc. [7]. But, then, responding to
the observations (such as those made by Churcher and
Shepperd [14]) that any counting-based measurements
applied to software where objects inherited methods and
attributes from other objects were open to interpretation,
Briand et al. [15] proposed a framework that formalized
how one could exercise different options when applying
coupling, cohesion, and complexity metrics to object-
oriented software. Recently, Arisholm et al. [16] have used
the framework laid out in [15] to propose metrics to
measure coupling among classes based on runtime analysis
for object-oriented systems.
While the work mentioned above deals primarily with how
to measure the quality of a modularized software system
through coupling, cohesion, and complexity metrics, many
other researchers have proposed metrics, albeit indirectly,
in their quest to develop automated tools for software
clustering. Clustering obviously depends on the
measurement of properties of semiformed modules that,
when optimized with respect to those properties, lead
(hopefully) to a well-modularized system. For example, in
the work on automated software-partitioning by Schwanke
[17], modules are quantitatively characterized by the degree
to which the functions packaged within the same module
contain “shared information.” Functions may share
information on the basis of, say, the commonality of the
names of the data objects used. Schwanke also characterizes
modules on the basis of function-call dependencies. If a
function A calls function B, then, in the approach used by
Schwanke, both A and B presumably belong to the same

module.
Along the same lines, meaning along the lines of
formulating metrics in the context of developing code
modularization algorithms, Mancoridis et al. [18], [19] have
used a quantitative measure called Modularization Quality
(MQ) that is a combination of coupling and cohesion.
Cohesion is measured as the ratio of the number of internal
function-call dependencies that actually exist to the
maximum possible internal dependencies, and coupling is
measured as the ratio of the number of actual external
function-call dependencies between the two subsystems to
the maximum possible number of such external
dependencies. The system level MQ is calculated as the
difference between the average cohesion and the average
coupling. Finally, an earlier preliminary publication by us
[32] mentions the need for API-based metrics for measuring
the quality of software modularization and presents some
metrics for doing the same. Our present work is a major
overhaul, upgrade, and expansion of that earlier
contribution.

3 The Notion of Modularity—Enunciation Of
The Underlying Principles

Modern software engineering dictates that a large body of
software be organized into a set of modules. According to
Parnas [33], a module captures a set of design decisions
which are hidden from other modules and the interaction
among the modules should primarily be through module
interfaces. In software engineering parlance, a module
groups a set of functions or subprograms and data
structures and often implements one or more business
concepts. This grouping may take place on the basis of
similarity of purpose or on the basis of commonality of
goal. The difference between the two is subtle but
important. An example of a module that represents the first
type of grouping is the java.util package of the Java
platform. The different classes of this package provide
different types of containers for storing and manipulating
objects.1 On the other hand, a module such as the java.net
package groups software entities on the basis of
commonality of goal, the goal being to provide support for
networking. The asymmetry between modules based on
these two different notions of grouping is perhaps best
exemplified by the fact that you are likely to use a java.util
class in a java.net-based program, but much less likely to do
so the other way around.
In either case, modules promote encapsulation (i.e.,
information hiding) by separating the module’s interface
from its implementation. The module interface expresses
the elements that are provided by the module for use by
other modules. In a well-organized system, only the
interface elements are visible to other modules. On the
other hand, the implementation contains the working code
that corresponds to the elements declared in the interface.

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 728
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

In modern parlance, such a module interface is known as
its API (Application Programming Interface). It is now
widely accepted that the overall quality of a large body of
software is enhanced when module interactions are
restricted to take place through the published API’s for the
modules.
The various dimensions along which the quality of the
software is improved by the encapsulation provided by
modularization include understandability, testability,
change- ability, analyzability, and maintainability. These
specific traits of software quality were recently articulated
by Arevalo in the context of object-oriented software design
[34], but they obviously apply to modularization in
general.2
So, if modularization is the panacea for the ills of
disorganized software, on what design principles should
code modularization be based? In what follows, we will
enunciate such principles and state what makes them
intuitively plausible and what support each derives from
the research literature.

P1. Principles Related to Similarity of Purpose. A module
groups a set of data structures and functions that together
offer a well-defined service. In other words, the structures
used for representing knowledge and any associated
functions in the same module should cohere on the basis of
similarity-of-service as opposed to, say, on the basis of
function call dependencies. Obviously, every service is
related to a specific purpose. We present the following
principles as coming under the “Similarity of Purpose”
rubric:
1) Maximization of Module Coherence on the Basis of
 Similarity and Singularity of Purpose,
2) Minimization of Purpose Dispersion,
3) Maximization of Module Coherence on the Basis
 Of Commonality of Goals ,and Minimization of
 Goal Dispersion.

P2. Principles Related to Module Encapsulation. As
mentioned earlier, encapsulating the implementation code
of a module and requiring that the external world interact
with the module through its published APIs are now a
widely accepted design practice. We now state the
following modularization principles that capture these
notions:
 1) Maximization of API-Based Intermodule Call Traffic.
 2) Minimization of non-API-Based Intermodule Call
 Traffic.

P3. Principle Related to Module Compilability. A
common cause of intermodule compilation dependency is
that a file from one module requires, through import or
include declarations, one or more files from another
module. As software system evolves and as some of the
modules begin to seem like utilities to the developers, it is

all too easy for such inter- dependencies to become circular.
For obvious reasons, such compilation interdependencies
make it more difficult for modules to grow in parallel and
for the modules to be tested independently. There- fore, to
the largest extent possible, it must be possible to compile
each module independently of all the other modules. When
modules can be compiled independently of one another,
then, as long as the module APIs do not change, the other
modules can be oblivious to the evolution of internal details
of any given module. This notion is captured by the
following principle:
1) Maximization of the Stand-Alone Module
 Compilability.
P4. Principle Related to Module Extendibility. One of the
most significant reasons for object-oriented software
development is that the classes can be easily extended
whenever one desires a more specialized functionality.
Extending object-oriented software through the notion of
sub classing allows for a more organized approach to
software development and maintenance since it allows for
easier demarcation of code authorship and responsibility.
While module- level compartmentalization of code does not
lend itself to the types of software extension rules that are
easy to enforce in object-oriented approaches, one
nonetheless wishes for the modules to exhibit similar
properties when it comes to code extension and
enhancement. The following principle captures this aspects
of code modularization:
1) Maximization of the Stand-Alone Module
 Extendibility.
2) Module extendibility is a particularly important issue
 for very large software systems in which the modules
 are likely to be organized in horizontal layers.

P5. Principle Related to Module Testability. Testing is a
major part of software development. At the mini- mum,
testing must ensure that software conforms to the
prevailing standards and protocols. This is commonly
referred to as requirements-based testing. But, even more
importantly, testing must ensure that the software behaves
as expected for a full range of inputs, both correct and
incorrect, from all users and processes, both at the level of
the program logic in the individual functions and at the
level of module interactions. Testing must take into account
the full range of competencies of all other agents that are
allowed to interact with the software. Testing procedures
can easily run into combinatorial problems when modules
cannot be tested independently; meaning that if each
module is to be tested for N inputs, then two
interdependent modules must be tested for N2 inputs. A
modularization procedure must therefore strive to fulfill
the following principle:

1) Maximization of the Stand-Alone Testability of

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 729
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

 Modules.
P6. Principles Related to Acyclic Dependencies. For
obvious reasons (and also as pointed out by Martin [35] and
Seng et al. [28]), it is important to minimize the cyclic
dependencies between the modules of a body of software.
Cyclic dependencies directly negate many of the benefits of
modularization. It is obviously more challenging to foresee
the consequences of changing a module if it both depends
on and is depended upon by other modules. Cyclic
dependencies become even more problematic when
modules are organized in the form of horizontal layers in a
large software system. (Layering serves an important
organizational concept for large systems; all the modules in
a layer can only seek the services of the layers below.) We
therefore state the following two principles:

1) Principle of Minimization of Cyclic Dependencies
Amongst Modules.

2) Principle of Maximization of Unidirectionality of

Control Flow in Layered Architectures.

P7. Principles Related to Module Size.In light of the
findings reported by Emam et al. [36], in a new software
development effort started from scratch today, one would
not ordinarily insist that the module sizes be roughly the
same and equal to some prespecified magic number.
Nonetheless, when modularizing legacy code that happens
to be in a chaotic state of organization, it would be highly
desirable to be able to bias a clustering algorithm toward
producing modules that are roughly of the same size,
whose value is dictated by considerations related to
software maintenance and such.4 As we said earlier in the
Introduction, placing all of the code in a single module is

technically a correct modularization, albeit not very useful.
We therefore need metrics that can steer a modularization
algorithm away from producing unacceptably large
modules and, to the extent other important considerations
are not violated, toward producing modules roughly equal
in size. The following two principles address this need:

1) Principle of Observance of Module Size Bounds.

2) Principle of Maximization of Module Size Uniformity.

The metrics we propose in the rest of this paper show
how good a given modularization is with respect to
the principles we have enunciated in this section.

3.1 Relationship Of The Previous Metrics To The
Enunciated Principles

What follows is a summarization of the metrics mentioned
in our literature survey in Section 2. This summarization
states briefly the extent, if at all, to which the metrics
measure the quality of the software from the standpoint of
the modularization principles P1 through P7.

1. Halstead [1] and Cyclomatic [2] Measures. These
have focused on the control flow complexity at
the level of individual functions and subroutines
and do not directly relate to any of the modularity
principles stated earlier.

2. Maintainability Index [3]. This is a linear
expression based on the Halstead and cyclomatic
measures as well as module lines of code and
module comments. Clearly, this metric does not
directly relate to any of the listed principles
either.

3. Coupling-cohesion-based metrics [4], [5], [7], [15].

These are measures of modularization quality
based on intermodule and intramodule
relationships that are derived from the structural
dependencies of modules obtained mainly
through a static analysis of software.

 These metrics can be broadly related to the

principles concerning module compilability,
extendibility, and testability (Principles P3, P4, and
P5). It is obviously the case that a cohesive module
that is just loosely coupled to other modules
exhibits less of a dependency on the other
modules. Consequently, its compilation, extension
and testing will have less of an impact on the other
modules.

 In this context, it may be observed that
characterizing modules primarily on the basis of
cohesion among entities (that constitute a module)
derived from structural dependencies (such as
function-call and data dependency) penalizes
modules in which the entities are grouped on the
basis of similarity of purpose. (A case in point
would be the java. until package of the Java
platform.) The work by [29] supports this
observation.

4. The modularity measure of [17]; modularization

quality (MQ) measure and its variations [20], [18],
[21], [22], [19]; coupling- cohesion, size, cyclic
dependency, software complexity [measures for
automated clustering. Several of the metrics
proposed in [28] relate to principles of acyclic
dependency (P6) and module size (P7), in

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 730
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

addition to P3, P4, and P5. The works by [19],
consider the notion of omnipresent objects and
clustering based on omnipresent objects. These
are loosely related to the principles concerning
the similarity of service (P1).

5. The coupling-cohesion metric based on

information theoretic notions [30]. This metric
measures coupling-cohesion patterns among
modules on the basis of structural dependencies.
This approach is different from the other
coupling-cohesion measures listed in items 3 and
4 above since those are count-based, whereas this
metric is pattern based.

 Like the other coupling-cohesion-based metrics

mentioned in items 3 and 4, this metric is related to
principles P3, P4, and P5.

6. Metric based on nonstructural information [31].

This metric measures cohesiveness and coupling
of entities on the basis of mutual information in
the information-theoretic sense. The authors have
used the metric to guide a software clustering
algorithm to arrive at a set of cohesive modules.

 This metric is closely related to the Similarity of
Purpose principles (P1).

The metrics listed in items 1 though 5 above conform only
partly to the principles outlined earlier in this section. As a
case in point, the coupling-cohesion-based metrics certainly
do not measure the similarity of purpose or the
commonality of goals (principles P1). Perhaps the metric
that comes closest to fulfilling the spirit of P1 is the one
presented in [31]. These prior contributions certainly do not
measure how effectively the principle that says that all
intermodule function calls should be routed through the
API’s of the modules (principles P2) is honored. These
metrics also do not measure the extent to which a module
encapsulates its internal (meaning non-API) functions and
keeps them from getting exposed to the external world. All
of the metrics listed above also do not provide a good
measure of the consequences of cyclic dependencies
between the modules, especially when the modules reside
in layered architectures.
3.2 Notation

In the rest of this paper, we will denote a software system
by the symbol S.

4. Coupling-Based Structural Metrics

 Starting with this section, we will now present a new
set of metrics that cater to the principles enunciated
in Section 3. We will begin with coupling-based
structural metrics that provide various measures of
the function-call traffic through the API’s of the
modules in relation to the overall function-call
traffic.

4.1 Module Interaction Index

This metric calculates how effectively a module’s API
functions are used by the other modules in the system.
Assume that a module has n functions{f1… fn}, of which
the n1 API functions are given by the subset{fa1……..fan1}.
Also assume that the system S has m1….m M modules. We
now express Module Interaction Index (MII) for a given
module m and for the entire software system S by

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 731
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

MII measures the extent to which a software system
adheres to the module encapsulation principles P2
presented in Section 3. Recall that these principles demand
a well- designed module should expose a set of API
functions through which other modules would interact.
These API functions represent the services that the module
has to offer. Since these API functions are meant to be used
by the other modules, the internal functions of a module
typically would not call the API functions of the module.
Therefore, a non- API function of a module should not
receive external calls to the maximum extent possible. In
other words, ideally, all the external calls made to a module
should be routed through the API functions only and the
API functions should receive only external calls.

Note that for a module m
increases as more and more intermediate module calls are
routed through the API functions of m . We obviously have
MII(m)->1 in the ideal case when all the intermodule calls
are routed through the API functions only. By the same
argument, MII(S) should also be close to 1 in the ideal case.
Therefore, MII quantitatively measures the extent to which
encapsulation related principles have been followed.
Complex software systems sometimes employ what are
known as driver modules to orchestrate the other modules.
For a driver module, MII(m)=0 will likely be the case. The
fact that a modularization effort must allow for such
modules does not detract from the fact that the overall goal
of a modularization effort should be to achieve as large a
value as possible for MII while allowing for the possibility
that some modules may not be able to contribute a fair
share to the overall index.

4.2 Non-API Function Closedness Index

We now analyze the function calls from the point of view of
non-API functions. Recall that the module encapsulation
principles P2 also require minimization of non-API-based
intermodule call traffic. Ideally, the non-API functions of a
module should not expose themselves to the external
world. In reality, however, a module may exist in a semi
modularized state where there remain some residual
intermodule function calls outside the API’s. (This is
especially true of large legacy systems that have been
partially modularized.) In this intermediate state, there may
exist functions that participate in both intermodule and
intramodule call traffic. We measure the extent of this

traffic using a metric that we call “Non-API Function
Closedness Index,” or NC.

Extending the notation presented in Section 3.2, let Fm, F
am, and F nam represent the set of all functions, the API
functions, and the non-API functions, respectively, in
module m. Ideally, Fm = Fam +Fnam. But since, in reality,
we may not be able to conclusively categorize a function as
an API function or as a non-API function, this constraint
would not be obeyed. The deviation from this constraint is
measured by the metric

Since a well-designed module does not expose the non-API
functions to the external world and all functions are either
API functions or non-API functions, |Fm |
- |Fam| would be equal to |Fnam| Therefore, NC(m)=1
for a well designed module. Otherwise, the value for this
metric will be between 0 and 1.

4.3 Api Function Usage Index

This index determines what fraction of the API functions
exposed by a module is being used by the other modules.
When a big, monolithic module presents a large and
versatile collection of API functions offering many different
services, any one of the other modules may not need all of
its services. That is, any single other module may end up
using only a small part of the API. The intent of this index
is to discourage the formation of such large, monolithic
modules offering services of disparate nature and encou-
rage modules that offer specific functionalities. Suppose
that m has n API functions and let us say that nj number of
API functions are called by another module mj. Also
assume that there are k modules m1……mkthat call one or
more of the API functions of module m. We may now
formulate an API function usage index in the following
manner:

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 732
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

where we assume that there are M apiu number of modules
that have nonzero number of API functions.
This metric characterizes, albeit indirectly and only
partially, the software in accordance with the principles
that come under the Similarity of Purpose (P1) rubric. For
example, maximizing module coherence on the basis of
commonality of goals does require that the modules not be
monolithic pieces of software and ought not to provide
disparate services. So making the modules more focused
with regard to nature of services provided by the API

functions would push the value of this metric close to its
maximum, which is 1. However, it must be mentioned that
since the metric does not actually analyze the specificity of
the API functions, one could indeed conjure up a set of
modules that are far from being goal-focused and that
nonetheless yield a high value for this metric. So, this
metric all by itself will not force a set of modules to become
less monolithic. Nonetheless, when considered in
conjunction with the other metrics, this metric can be
expected to play a desirable role in the characterization of a
set of modules.

4.4 Implicit Dependency Index

An insidious form of dependency between modules comes
into existence when a function in one module writes to a
global variable that is read by a function in another module.
The same thing can happen if a function in one module
writes to a file whose contents are important to the
execution of another function in a different module. And
the same thing happens when modules interact with one
another through database files. We refer to such inter-
module dependencies as implicit dependencies.
Detecting implicit dependencies often requires a dynamic
runtime analysis of the software. Such analysis is time
consuming and difficult to carry out for complex business
applications, especially applications that run into millions
of lines of code and that involve business scenarios that can
run into thousands, each potentially creating a different
implicit dependency between the modules. Here, we
propose a simple static-analysis-based metric to capture
such dependencies. This metric, which we call the Implicit
Dependency Index (IDI), is constructed by recording for
each module the number of functions that write to global
entities (such as variables, files, databases), with the proviso
that such global entities are accessed by functions in other
modules. We believe that the larger this count is in relation
to the size of the intermodule traffic consisting of explicit
function calls, the greater the insidiousness of implicit
dependencies.
For each module mi, we use the notation Dg (mi, mj),i not
equal to j denote the number of dependencies created when
a function in mi writes to a global entity that is
subsequently accessed by some function in mj. Let Dg (mi,
mj),i not equal to j denote the number of explicit calls made

by all the functions in mi to any of the functions in mj. We
claim that the larger Dg is in relation to Df, the worse the
state of the software system. We therefore define the metric
as follows:

Where C(m) is the set of all modules that depend on the
module m through implicit dependencies of the sort we
have described in this section.
With regard to where this metric belongs in the landscape
of the principles we presented in Section 3, as we have said
before, ideally all the interaction between modules must be
through published API functions, implying that the
number of implicit dependencies must be few and far
between. Therefore, an ideal API-based system will make
IDI equal to 1. Clearly, this is in conformance with the
principles of module encapsulation (P2) that requires
minimization of such implicit, non-API- based
communications.

5 Experiments

Our experimental validation of the metrics is made
challenging by the fact that it is difficult to find examples of
non-object-oriented software that are modularized and that
have published APIs for each of the modules. Many of the
publicly available software systems with published APIs
for the modules, such as Qt, GNOME/GTK+, wx Windows,
JDK and many others, are object-oriented. Our metrics are
not meant for such software.

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 733
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

We have therefore resorted to applying our metrics to
software systems that are well-organized into directory
structures (mostly on the basis of the services offered by the
different directories). As we will explain later, it is
relatively straightforward to label the functions in the
different directories of these software systems as API or
non-API functions on the basis of the relative frequencies of
the call traffic from within a directory and from the other
directories.10 The software systems we chose included a
mix of open source systems and several proprietary
business applications. These software systems are medium
to large sized, Ranging from 160,000 to several million lines
of C and C++ programs. The largest proprietary business
application we tested the metrics on ran into 10 million
lines of C code. But, for obvious reasons, we will limit our
discussion in the rest of this section to the freely available
software.
The open source software systems chosen for reporting our
experimental results in this section—MySQL, Apache,
Mozilla, GCC, the Linux kernel, and PostgreSql—are highly
regarded in academia and industry for their robustness and
for the quality of code. For these software systems, we took
the directory structure as examples of human-delineated
modularization. Given the high quality of code
organization, it should not come as a surprise that the
major directories of these systems correspond to the
different specialized services offered by the software
systems. In all these systems, the different directories and
subdirectories carry mnemonic names that hold clues to the
services offered by those directories.
Before calculating the metrics, the code was first analyzed
by the open-source tool Sourcenav [47] that yielded a
database containing the associations between the function
definitions and the corresponding file names and also the

function-call dependency information. Subsequently, we
ran a set of tools written in Perl and Java to extract the
metrics presented in this paper. These steps are depicted in
Fig. 1a. The output produced by Sourcenav is summarized
in Table .

Modularity Assessment Tool Architecture. (a) Schematic
diagram. (b) Concept extraction scheme.

To verify the usefulness of our metrics, we not only need to
show that the numbers look good for well-written code, we
also need to demonstrate that the numbers yielded by the
metrics become progressively worse as the code becomes
increasingly disorganized. In order to make such a
demonstration, starting from the original code, we created
different modularized versions of the software. These
versions correspond to the following scenarios:
1. Scenario 1 (Human). We considered the leaf nodes of
the directory hierarchy of the original source code to be the
most fine-grained functional modules. All the files (and

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 734
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

functions within) inside a leaf level directory were
considered to belong to a single module—the module
corresponding to the directory itself. In this manner, all leaf
level directories formed the module set for the software.
We call this module set the Developer Generated Module
Set.
2. Scenario 2 (Random). Functions were assigned
randomly to modules in such a manner that we ended
Table

up with the same number of modules as in the developer
generated module set. We call this the Randomly
Generated Module Set.

6 Concept Extraction

In order to evaluate the CDM and CCM metrics, we must
extract various domain concepts from the source code and
create a frequency distribution of the concepts for each
module. The concept extraction process is shown in Fig. 1b.
The extraction process takes an input file containing a set of
business concept names and the associated terms or key-
words that can uniquely identify a business concept. This
file in Fig. 1b is currently created manually. The Keyword
Extractor component takes these keywords as regular
expressions and computes a concept frequency distribution
for each function by counting the occurrences of these
keywords from function signature, return types, and data
structures used by the function. However, function calls are
not considered in the counting process since they can skew
the concept distribution frequencies. For example, suppose
that a customer-update function fcustomer calls an account-
handling function faccount several times. If we look for the
concept account in the function call faccount(called by the
function f customer), several occurrences of the concept

Comparison of metric values for Human and random
modularization of some systems. (a) httpd-2.0.53 metric
values. (b) Mysql metric values.
account will be found. If the number of occurrences is
relatively high, account might appear (incorrectly) as the
dominating concept in fcustomer.

7 Experimental Results

The first set of experimental results show how the metric
values change when the modularization scenario is
changed from the human-supplied to random. Fig. 2 shows
the results obtained for the four open-source applications.
The second sets of experimental results are a comparative
presentation of the metric values for different versions of
the software systems. Fig. 3 shows the metric values for two
different versions of Apache and Mozilla software.
The CDM and CCM metrics depend on the relative
frequencies of the concepts in the different modules. It is
obviously not feasible to show these relative frequencies
and how these frequencies change with changes in the
modularization for all the concepts. So, we arbitrarily chose
a couple of concepts, user authentication for the Apache
software and parser for MySQL, to show the distribution of
their relative frequencies in the original software and in the
randomized version. These are plotted in Fig.

8 Conclusion

We have enunciated a set of design principles for code
modularization and proposed a set of metrics that

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 735
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

characterize software in relation to those principles.
Although many of the principles carry intuitive plausibility,
several of them are supported by the research literature
published to date. Our proposed metrics seek to
characterize a body of software according to the enunciated
principles. The structural metrics are driven by the notion
of API—a notion central to modern software development.
Other metrics based on notions such as size-roundedness,
size-uniformity, operational efficiency in layered
architectures, and similarity of purpose play important
supporting roles. These supporting metrics are essential
since otherwise it would be possible to declare a malformed
software system as being well-modularized. As an extreme
case in point, putting all of the code in a single module
would yield high values for some of the API-based metrics,
since the modularization achieved would be functionally
correct (but highly unacceptable).
We reported on two types of experiments to validate the
metrics. In one type, we applied the metrics to two different
versions of the same software system. Our experiments
confirmed that our metrics were able to detect the
improvement in modularization in keeping with the
opinions expressed in the literature as to which version is
considered to be better. (See Fig.)
The other type of experimental validation consisted of
randomizing a well-modularized body of software and
seeing how the value of the metrics changed. This
randomization very roughly simulated what sometimes can
happen to a large industrial software system as new
features are added to it and as it evolves to meet the
changing hardware requirements. For these experiments,
we chose open-source software systems. For these systems,
we took for modularization the directory structures created
by the developers of the software. It was interesting to see
how the changes in the values of the metrics confirmed this
process of code disorganization.
With regard to our future work, in addition to the empirical
support presented in this paper, we would also like to
validate them theoretically. As we mentioned in Section 2,
theoretical validation implies conformance to a set of
agreed-upon principles that are usually stated in the form
of a theoretical framework. Again as mentioned in Section
2, the more notable of the frameworks that have been
proposed over the years for software metrics validation
include those by Kitchen ham et al. [10] (see also Fenton
and Pfleeger [11]) and Briand et al. [8], [13]. If we also
include the set of desirable properties for metrics proposed
by Weyuker [6], that gives us four “frameworks” as
possible approaches for the theoretical validation of our
metrics.

References

[1] M.H. Halstead, Elements of Software Science,
Operating and Programming Systems Series, vol. 7,

Elsevier, 1977.

[2] T.J. McCabe and A.H. Watson, “Software
Complexity,” Crosstalk, J. Defense Software Eng., vol. 7, no.
12, pp. 5-9, Dec. 1994.

[3] P. Oman and J. Hagemeister, “Constructing and Testing
of Polynomials Predicting Software Maintainability,” J.
Systems and Software, vol. 24, no. 3, pp. 251-266, Mar. 1994.

[4] W. Stevens, G. Myers, and L. Constantine,
“Structured Design,” IBM Systems J., vol. 13, pp. 115-139,
1974.

[5] E. Yourdon and L.L. Constantine, Structured Design:
Fundamentals of a Discipline of Computer Program and
Systems Design. Prentice Hall, 1979.

[6] E. Weyuker, “Evaluating Software Complexity
Measures,” IEEE Trans. Software Eng., vol. 14, no. 9, pp.
1357-1365, Sept. 1988.

[7] S.R. Chidamber and C.F. Kemerer, “A Metrics Suite
for Object
Oriented Design,” IEEE Trans. Software Eng., vol. 20, no. 6,
pp. 476-
493, June 1994.

 [8] L.C. Briand, S. Morasca, and V.R. Basili, “Property-
Based Software
Engineering Measurement,” IEEE Trans. Software Eng., vol.
22,
no. 1, pp. 68-85, Jan. 1996.

[9] N. Sharma, P. Joshi, and R.K. Joshi, “Applicability of
Weyuker’s
Property 9 to Object Oriented Metrics,” short note, IEEE
Trans.
Software Eng., vol. 32, no. 3, pp. 209-211, Mar. 2006.

[10] B. Kitchenham, S. Pfleeger, and N. Fenton, “Towards a
Frame- work for Software Validation Measures,” IEEE
Trans. Software
Eng., vol. 21, no. 12, pp. 929-944, Dec. 1995.

[11] S. Pfleeger and N. Fenton, Software Metrics. A
Rigorous and Practical
Approach. Int’l Thomson Computer Press, 1997.

[12] S. Morasca, L.C. Briand, V. Basili, E.J. Weyuker, and
M. Zelkowitz,
“Comments on ‘Towards a Framework for Software
Measurement Validation,’” IEEE Trans. Software Eng., vol.
23, no. 3, pp. 187-188, Mar. 1997.

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 736
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

[13] L.C. Briand, S. Morasca, and V. Basili, “An
Operational Process for Goal Driven Definition of
Measures,” IEEE Trans. Software Eng., vol. 28, no. 12, pp.
1106-1125, Dec. 2002.

[14] N. Churcher and M. Shepperd, “Comments on a
Metrics Suite for Object-Oriented Design,” IEEE Trans.
Software Eng., vol. 21, no. 3, pp. 263-265, Mar. 1995.

[15] L.C. Briand, J.W. Daly, and J.K. Wust, “A Unified
Framework for Coupling Measurement in Object-Oriented
Systems,” IEEE Trans. Software Eng., vol. 25, no. 1, pp. 91-
121, 1999.

[16] E. Arisholm, L.C. Briand, and A. Foyen, “Dynamic
Coupling Measurement for Object-Oriented Software,”
IEEE Trans. Software Eng., vol. 30, no. 4, pp. 491-506, Aug.
2004.

[17] R.W. Schwanke, “An Intelligent Tool for Reengineering
Software Modularity,” Proc. 18th Int’l Conf. Software Eng.,
pp. 83-92, May 1991.

[18] S. Mancoridis, B.S. Mitchell, C. Rorres, Y. Chen, and
E.R. Gansner, “Using Automatic Clustering to Produce
High-Level System Organizations ofSource Code,” Proc.
Sixth Int’l Workshop Program Comprehension (IWPC ’98),
pp. 45-52, 1998.

[19] S. Mancoridis, B.S. Mitchell, Y.-F. Chen, and E.R.
Gansner, “Bunch: A Clustering Tool for the Recovery and
Maintenance of Software System Structures,” Proc. Int’l
Conf. Software Main- tenance (ICSM), pp. 50-59,
http://citeseer.ist.psu.edu/article/
mancoridis99bunch.html, 1999.

[20] H. Fahmy and R. Holt, “Software Architecture
Transformations,” Proc. Int’l Conf. Software Maintenance,
pp. 88-96, Oct. 2000.

[21] D. Doval, S. Mancoridis, and B.S. Mitchell,
“Automatic Clustering of Software Systems Using a
Genetic Algorithm,” Proc. Int’l Workshop Software
Technology and Eng. Practice, 1999.

[22] B.S. Mitchell, S. Mancoridis, and M. Traverso, “Search
Based Reverse Engineering,” Proc. 14th Int’l Conf. Software
Eng. and Knowledge Engineering (SEKE ’02), pp. 431-438,
2002.

[23] K. Mahdavi, M. Harman, and R.M. Hierons, “A
Multiple Hill Climbing Approach to Software Module
Clustering,” Proc. 19th Int’l Conf. Software Maintenance
(ICSM ’03), pp. 315-324, 2003.

[24] A. Shokoufandeh, S. Mancoridis, T. Denton, and M.
Maycock, “Spectral and Meta-Heuristic Algorithms for
Software Cluster- ing,” J. System and Software, vol. 77, no.
3, pp. 213-223, Sept. 2005.
[
25] M. Harman, S. Swift, and K. Mahdavi, “An Empirical
Study of the Robustness of Two Module Clustering Fitness
Functions,” Proc. 2005 Conf. Genetic and Evolutionary
Computation, pp. 1029-1036, 2005.

[26] K. Sartipi and K. Kontogiannis, “Component
Clustering Based on Maximal Association,” Proc. Eighth
Working Conf. Reverse Eng. (WCRE ’01), pp. 103-114, 2001.

[27] K. Sartipi, “Software Architecture Recovery Based-
On Pattern Matching,” PhD dissertation, School of
Computer Science, Univ. Waterloo, 2003.

[28] O. Seng, M. Bauer, M. Biehl, and G. Pache, “Search-
Based Improvement of Subsystem Decompositions,” Proc.
Conf. Genetic and Evolutionary Computation, pp. 1045-
1051, http://doi.acm.org/ 10.1145/1068186, 2005.

[29] Z. Wen and V. Tzerpos, “Software Clustering Based on
Omni- present Object Detection,” Proc. 13th Int’l Workshop
Program Comprehension (IWPC ’05), pp. 269-278, 2005.

[30] E.B. Allen, T.M. Khoshgoftaar, and Y. Chen,
“Measuring Coupling and Cohesion of Software Modules:
An Information- Theory Approach,” Proc. Seventh Int’l
Software Metrics Symp. (METRICS ’01), pp. 124-134, 2001.

[31] P. Andritsos and V. Tzerpos, “Information-Theoretic
Software Clustering,” IEEE Trans. Software Eng., vol. 31,
no. 2, pp. 150-165, Feb.

[32] S. Sarkar, A.C. Kak, and N.S. Nagaraja, “Metrics for
Analyzing Module Interactions in Large Software
Systems,” Proc. 12th Asia- Pacific Software Eng. Conf.
(APSEC ’05), pp. 264-271, 2005.

[33] D.L. Parnas, “On the Criteria to Be Used in
Decomposing Systems into Modules,” Comm. ACM, vol.
15, no. 12, pp. 1053-1058, 1972.

[34] G.B. Arevalo, “High-Level Views in Object-Oriented
Systems Using Formal Concept Analysis,” PhD
dissertation, 2004.

[35] R. Martin, “Design Principles and Design Patterns,”
http://www.objectmentor.com, 2000,

[36] K.L. Emam, S. Benlarbi, N. Goel, W. Melo, H. Lounis,
and S.N. Rai, “The Optimal Class Size for Object Oriented
Software,” IEEE Trans. Software Eng., vol. 28, no. 5, pp.

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 737
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

494-509, May 2002.

[37] L. Hatton, “Reexamining the Fault Density-Component
Size Connection,” IEEE Software, vol. 14, no. 2, pp. 89-97,
1997.

[38] D.H. Hutchens and V.R. Basili, “System Structure
Analysis: Clustering with Data Binding,” IEEE Trans.
Software Eng., vol. 11, no. 8, pp. 749-757, Aug. 1985.

[39] J. Rosenberg, “Some Misconceptions About Lines of
Code,” Proc. Fourth Int’l Software Metrics Symp.
(METRICS ’97), pp. 137-142, 1997.

[40] F. Bachmann, L. Bass, J. Carriere, P. Clements, D.
Garlan, J. Ivers, R. Nord, and R. Little, Software
Architecture Documentation in Practice: Documenting
Architectural Layers, Special Report CMU/ SEI-2000-SR-
004, Software Eng. Inst., Carnegie Mellon Univ., 2000.

[41] P. Clements, F. Bachman, L. Bass, D. Garlan, J. Ivers, R.
Little, R. Nord, and J. Stafford, Documenting Software
Architecture, Views and Beyond. Addison Wesley, Sept.
2002.

[42] F. Rysselberghe and S. Demeyer, “Studying Software
Evolution Information by Visualizing the Change History,”
Proc. 20th IEEE Int’l Conf. Software Maintenance, pp. 328-
337, Sept. 2004.

[43] T. Girba, S. Ducasse, and M. Lanza, “Yesterday’s
Weather: Guiding Early Reverse Engineering Efforts by
Summarizing the Evolution of Changes,” Proc. Int’l Conf.
Software Maintenance, 2004.

[44] J. Lakos, Large Scale C++ Software Design. Addison-
Wesley, 1996.

 [45] M. Siff and T. Reps, “Identifying Modules via
Concept Analysis,”
IEEE Trans. Software Eng., vol. 25, pp. 749-768, 1999.

[46] P. Tonella, “Concept Analysis for Module
Restructuring,” IEEE
Trans. Software Eng., vol. 27, pp. 351-363, 2001.

[47] Source Navigator
5.4.1,http://sourcenav.sourceforge.net, 2003.

 [48] A. MacCormack, J. Rusnak, and C. Baldwin,
Exploring the Structure
of Complex Software Designs: An Empirical Study of Open
Source and Proprietary Code, Technical Report 05-016,
Harvard Business School working paper, 2005.

[49] B. Eich, “Development Roadmap, ” Mozilla home page,
http:// www.mozilla.org/roadmap/roadmap-26-Oct-
1998.html, Oct. 1998.

