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Abstract—We present in this paper a new set of metrics that measure the quality of modularization of a non-object-oriented software system. We have 

proposed a set of design principles to capture the notion of modularity and defined metrics centered around these princ iples. These metrics characterize 
the software from a variety of perspectives: structural, architectural, and notions such as the similarity of purpose and commonality of goals. (By 

structural, we are referring to intermodule coupling-based notions, and by architectural, we mean the horizontal layering of modules in large software 
systems.) We employ the notion of API (Application Programming Interface) as the basis for our structural metrics. The rest of the metrics we present 
are in support of those that are based on API. Some of the important support metrics include those that characterize each module on the basis of the 

similarity of purpose of the services offered by the module. These metrics are based on information-theoretic principles. We tested our metrics on some 
popular open-source systems and some large legacy-code business applications. To validate the metrics, we compared the results obtained on human-
modularized versions of the software (as created by the developers of the software) with those obtained on randomized versions of the code. For 
randomized versions, the assignment of the individual functions to modules was randomized. 

 
Index Terms — Metrics/measurement, modules and interfaces, information theory, distribution, maintenance and enhancement, maintainability, 

coupling, layered architecture. 
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1 Introduction 
MUCH work has been done during the last several years on 
automatic approaches for code reorganization. 
Fundamental to any attempt at code reorganization is the 
division of the software into modules, publication of the 
API (Application Programming Interface) for the modules, 
and then requiring that the modules access each other’s 
resources only through the published interfaces. 
Our ongoing effort, from which we draw the work reported 
here, is focused on the case of reorganization of legacy 
software, consisting of millions of line of non-object- 
oriented code that was never modularized or poorly 
modularized to begin with. We can think of the problem as 
reorganization of millions of lines of code residing in 
thousands of files in hundreds of directories into modules,  
 
Where each module is formed by grouping a set of entities 
such as files, functions, data structures and variables into a 
logically cohesive unit. Furthermore, each module makes 
itself available to the other modules (and to the rest of the 
world) through a published API. The work we report here 
addresses the fundamental issue of how to measure the 
quality of a given modularization of the software. 
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Note that modularization quality is not synonymous with 
modularization correctness. Obviously, after software has 
been modularized and the API of each of the modules 
published, the correctness can be established by checking 
function call dependencies at compile time and at runtime. 
If all intermodule function calls are routed through the 
published API, the modularization is correct. As a 
theoretical extreme, retaining all of the software in a single 
monolithic module is a correct modularization though it is 
not an acceptable solution. On the other hand, the quality of 
modularization has more to do with partitioning software 
into more maintainable (and more easily extendible) 
modules on the basis of the cohesiveness of the service 
provided by each module. Ideally, while containing all of 
the major functions that directly contribute to a specific 
service vise the other modules, each module would also 
contain all of the ancillary functions and the data structures 
if they are only needed in that module. Capturing these 
“cohesive services” and“ ancillary support” criteria into a 
set of metrics is an important goal of our research. The 
work that we report here is a step in that direction. 

More specifically, we present in this work a set of metrics 
that measure in different ways the interactions between the 
different modules of a software system. It is important to 
realize that metrics that only analyze intermodal 
interactions cannot exist in isolation from other metrics that 
measure the quality of a given partitioning of the code. To 
explain this point, it is not very useful to partition a 
software system consisting of a couple of million lines of 
code into two modules, each consisting of a million lines of 
code, and justify the two large modules purely on the basis 
of function call routing through the published APIs for the 
two modules. Each module would still be much too large 
from the standpoint of code maintenance and code 
extension. The module interaction metrics must therefore 
come with a sibling set of metrics that record other 
desirable properties of the code. The metrics we present in 
Section 4, while focusing primarily on module interactions, 
also include other necessary measures of the quality of a 
given partitioning of code. 
The paper is organized as follows: In the next section, we 
provide a brief review of the literature relevant to our 
work. In Section 3, we describe the notion of modularity of 
a system and enunciate a set of design principles that 
should be adhered to in a well-modularized system. Next, 
in Section 4, we define a set of metrics based on the 
structural aspects  of  intermodule  relationships.  

 
2 PREVIOUS WORK ON SOFTWARE METRICS 

RELEVANT TO OUR CONTRIBUTION 
Some of the earliest contributions to software metrics deal 
with the measurement of code complexity [1], [2] and 
maintainability [3] based on the complexity measures 
proposed in [1], [2]. From the standpoint of code modular- 
ization, some of the earliest software metrics are based on 
the notions of coupling and cohesion [4], [5]. Low inter- 
module coupling, high intramodule cohesion, and low 
complexity have always been deemed to be important 
attributes of any modularized software. 
The above-mentioned early developments in software 
metrics naturally led several researchers to question their 
theoretical validity. Theoretical validation implies 
conformance to a set of agreed-upon principles and these 
principles are usually stated in the form of a theoretical 
framework. In 1988, Weyuker [6] proposed a set of 
properties to be satisfied by software complexity metrics. 
Many subsequent contributions discussed these properties 
from the standpoint of sufficiency/necessity and whether 
or not they could be supported by more formal under- 
pinnings. See for example [7], [8], and [9], and the citations 
contained therein. Other notable software metrics valida- 
tion frameworks include those by Kitchenham et al. [10] 
(see also Fenton and Pfleeger [11]), who have borrowed the 
needed principles from the classical measurement theory. 
However, this framework was found wanting by Morsaca 
et al. [12] with regard to how the scale types used for 
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attribute  measurements  were constrained. 
With regard to modularity, Briand et al. [8] have given us a 
generic formalization of such fundamental notions as 
module and system, and such metrical notions as coupling, 
cohesion, and complexity. Their formalization is generic in 
the sense that it is not limited to any specific style of 
programming. The authors have also mapped several well-
known metrics such as Halstead length [1] and cyclomatic 
complexity [2], as well as coupling and cohesion metrics, 
into this framework. Frameworks such as those proposed 
by Briand et al. [8] are important because they educate us 
about the fundamental criteria that must be fulfilled by the 
various metrics. The work reported in [8] was extended by 
the authors in [13]; in this more recent work, they have 
proposed a framework for a goal-driven definition of 
software measures. 
The early work on software metrics was followed by their 
reformulation for the object-oriented case. Researchers 
came up with coupling, cohesion, and complexity metrics 
that measured the various quality attributes of OO soft- 
ware. These measures were primarily at the level of how 
the individual classes were designed from the standpoint of 
how many methods were packed into the classes, the depth 
of the inheritance tree, the inheritance fan-out, couplings 
between objects (CBO) created by one object invoking a 
method on another object, etc. [7]. But, then, responding to 
the observations (such as those made by Churcher and 
Shepperd [14]) that any counting-based measurements 
applied to software where objects inherited methods and 
attributes from other objects were open to interpretation, 
Briand et al. [15] proposed a framework that formalized 
how one could exercise different options when applying 
coupling, cohesion, and complexity metrics to object- 
oriented software. Recently, Arisholm et al. [16] have used 
the framework laid out in [15] to propose metrics to 
measure coupling among classes based on runtime analysis 
for object-oriented systems. 
While the work mentioned above deals primarily with how 
to measure the quality of a modularized software system 
through coupling, cohesion, and complexity metrics, many 
other researchers have proposed metrics, albeit indirectly, 
in their quest to develop automated tools for software 
clustering. Clustering obviously depends on the 
measurement of properties of semiformed modules that, 
when optimized with respect to those properties, lead 
(hopefully) to a well-modularized system. For example, in 
the work on automated software-partitioning by Schwanke 
[17], modules are quantitatively characterized by the degree 
to which the functions packaged within the same module 
contain “shared information.” Functions may share 
information on the basis of, say, the commonality of the 
names of the data objects used. Schwanke also characterizes 
modules on the basis of function-call dependencies. If a 
function A calls function B, then, in the approach used by 
Schwanke, both A and B presumably belong to the same 

module. 
Along the same lines, meaning along the lines of 
formulating metrics in the context of developing code 
modularization algorithms, Mancoridis et al. [18], [19] have 
used a quantitative measure called Modularization Quality 
(MQ) that is a combination of coupling and cohesion. 
Cohesion is measured as the ratio of the number of internal 
function-call dependencies that actually exist to the 
maximum possible internal dependencies, and coupling is 
measured as the ratio of the number of actual external 
function-call dependencies between the two subsystems to 
the maximum possible number of such external 
dependencies. The system level MQ is calculated as the 
difference between the average cohesion and the average 
coupling. Finally, an earlier preliminary publication by us 
[32] mentions the need for API-based metrics for measuring 
the quality of software modularization and presents some 
metrics for doing the same. Our present work is a major 
overhaul, upgrade, and expansion of that earlier 
contribution. 

 
3 The Notion of Modularity—Enunciation Of 
The Underlying Principles 
 
Modern software engineering dictates that a large body of 
software be organized into a set of modules. According to 
Parnas [33], a module captures a set of design decisions 
which are hidden from other modules and the interaction 
among the modules should primarily be through module 
interfaces. In software engineering parlance, a module 
groups a set of functions or subprograms and data 
structures and often implements one or more business 
concepts. This grouping may take place on the basis of 
similarity of purpose or on the basis of commonality of 
goal. The difference between the two is subtle but 
important. An example of a module that represents the first 
type of grouping is the java.util package of the Java 
platform. The different classes of this package provide 
different types of containers for storing and manipulating 
objects.1 On the other hand, a module such as the java.net 
package groups software entities on the basis of 
commonality of goal, the goal being to provide support for 
networking. The asymmetry between modules based on 
these two different notions of grouping is perhaps best 
exemplified by the fact that you are likely to use a java.util 
class in a java.net-based program, but much less likely to do 
so the other way around. 
In either case, modules promote encapsulation (i.e., 
information hiding) by separating the module’s interface 
from its implementation. The module interface expresses 
the elements that are provided by the module for use by 
other modules. In a well-organized system, only the 
interface elements are visible to other modules. On the 
other hand, the implementation contains the working code 
that corresponds to the elements declared in the interface. 
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In modern parlance, such a module interface is known as 
its API (Application Programming Interface). It is now 
widely accepted that the overall quality of a large body of 
software is enhanced when module interactions are 
restricted to take place through the published API’s for the 
modules. 
The various dimensions along which the quality of the 
software is improved by the encapsulation provided by 
modularization include understandability, testability, 
change- ability, analyzability, and maintainability. These 
specific traits of software quality were recently articulated 
by Arevalo in the context of object-oriented software design 
[34], but they obviously apply to modularization in 
general.2 
So, if modularization is the panacea for the ills of 
disorganized software, on what design principles should 
code modularization be based? In what follows, we will 
enunciate such principles and state what makes them 
intuitively plausible and what support each derives from 
the research literature. 

 
P1. Principles Related to Similarity of Purpose. A module 
groups a set of data structures and functions that together 
offer a well-defined service. In other words, the structures 
used for representing knowledge and any associated 
functions in the same module should cohere on the basis of 
similarity-of-service as opposed to, say, on the basis of 
function call dependencies. Obviously, every service is 
related to a specific purpose. We present the following 
principles as coming under the “Similarity of Purpose” 
rubric: 
1) Maximization of Module Coherence on the Basis of                                                      
            Similarity and Singularity of Purpose,        
2) Minimization of Purpose Dispersion,                          
3) Maximization  of  Module  Coherence on the Basis 
           Of  Commonality  of  Goals ,and  Minimization of  
           Goal Dispersion.                                              
 
P2. Principles Related to Module Encapsulation. As 
mentioned earlier, encapsulating the implementation code 
of a module and requiring that the external world interact 
with the module through its published APIs are now a 
widely accepted design practice. We now state the 
following modularization principles that capture these 
notions: 
  1)  Maximization of API-Based Intermodule Call Traffic. 
  2)  Minimization  of  non-API-Based Intermodule Call      
       Traffic. 
 
P3. Principle Related to Module Compilability. A 
common cause of intermodule compilation dependency is 
that a file from one module requires, through import or 
include declarations, one or more files from another 
module. As software system evolves and as some of the 
modules begin to seem like utilities to the developers, it is 

all too easy for such inter- dependencies to become circular. 
For obvious reasons, such compilation interdependencies 
make it more difficult for modules to grow in parallel and 
for the modules to be tested independently. There- fore, to 
the largest extent possible, it must be possible to compile 
each module independently of all the other modules. When 
modules can be compiled independently of one another, 
then, as long as the module APIs do not change, the other 
modules can be oblivious to the evolution of internal details 
of any given module. This notion is captured by the 
following principle: 
1) Maximization of the Stand-Alone Module  
            Compilability. 
P4. Principle Related to Module Extendibility. One of the 
most significant reasons for object-oriented software 
development is that the classes can be easily extended 
whenever one desires a more specialized functionality. 
Extending object-oriented software through the notion of 
sub classing allows for a more organized approach to 
software development and maintenance since it allows for 
easier demarcation of code authorship and responsibility. 
While module- level compartmentalization of code does not 
lend itself to the types of software extension rules that are 
easy to enforce in object-oriented approaches, one 
nonetheless wishes for the modules to exhibit similar 
properties when it comes to code extension and 
enhancement. The following principle captures this aspects 
of  code modularization: 
1) Maximization of the Stand-Alone Module  
            Extendibility. 
2)        Module extendibility is a particularly important issue                     
           for very large software systems in which the modules 
           are  likely to be organized in horizontal layers.  
 
P5. Principle Related to Module Testability. Testing is a 
major part of software development. At the mini- mum, 
testing must ensure that software conforms to the 
prevailing standards and protocols. This is commonly 
referred to as requirements-based testing. But, even more 
importantly, testing must ensure that the software behaves 
as expected for a full range of inputs, both correct and 
incorrect, from all users and processes, both at the level of 
the program logic in the individual functions and at the 
level of module interactions. Testing must take into account 
the full range of competencies of all other agents that are 
allowed to interact with the software. Testing procedures 
can easily run into combinatorial problems when modules 
cannot be tested independently; meaning that if each 
module is to be tested for N inputs, then two 
interdependent modules must be tested for N2 inputs. A 
modularization procedure must therefore strive to fulfill 
the following principle: 
  
 
1)       Maximization of the Stand-Alone Testability of  
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           Modules. 
P6. Principles Related to Acyclic Dependencies. For 
obvious reasons (and also as pointed out by Martin [35] and 
Seng et al. [28]), it is important to minimize the cyclic 
dependencies between the modules of a body of software. 
Cyclic dependencies directly negate many of the benefits of 
modularization. It is obviously more challenging to foresee 
the consequences of changing a module if it both depends 
on and is depended upon by other modules. Cyclic 
dependencies become even more problematic when 
modules are organized in the form of horizontal layers in a 
large software system. (Layering serves an important 
organizational concept for large systems; all the modules in 
a layer can only seek the services of the layers below.) We 
therefore state the following two principles: 
 

1) Principle of Minimization of Cyclic Dependencies 
Amongst Modules. 

 
2)     Principle of Maximization of Unidirectionality of 

Control Flow in Layered Architectures. 
 

 
P7. Principles Related to Module Size.In light of the 
findings reported by Emam et al. [36], in a new software 
development effort started from scratch today, one would 
not ordinarily insist that the module sizes be roughly the 
same and equal to some prespecified magic number. 
Nonetheless, when modularizing legacy code that happens 
to be in a chaotic state of organization, it would be highly 
desirable to be able to bias a clustering algorithm toward 
producing modules that are roughly of the same size, 
whose value is dictated by considerations related to 
software maintenance and such.4 As we said earlier in the 
Introduction, placing all of the code in a single module is 

technically a correct modularization, albeit not very useful. 
We therefore need metrics that can steer a modularization 
algorithm away from producing unacceptably large 
modules and, to the extent other important considerations 
are not violated, toward producing modules roughly equal 
in size. The following two principles address this need: 
 
1) Principle of Observance of Module Size Bounds. 

 
2) Principle of Maximization of Module Size Uniformity.  

 
The metrics we propose in the rest of this paper show 
how good a given modularization is with respect to 
the principles we have enunciated in this section. 
 

 
 
 
3.1 Relationship Of The Previous Metrics To The 
Enunciated Principles 

 

What follows is a summarization of the metrics mentioned 
in our literature survey in Section 2. This summarization 
states briefly the extent, if at all, to which the metrics 
measure the quality of the software from the standpoint of 
the  modularization  principles P1 through P7. 
 

1.      Halstead [1] and Cyclomatic [2] Measures. These 
have focused on the control flow complexity at 
the level of individual functions and subroutines 
and do not directly relate to any of the modularity 
principles stated earlier. 
 

2.       Maintainability Index [3]. This is a linear 
expression based on the Halstead and cyclomatic 
measures as well as module lines of code and 
module comments. Clearly, this metric does not 
directly relate to any of the listed principles 
either. 

 
3.       Coupling-cohesion-based metrics [4], [5], [7], [15]. 

These are measures of modularization quality 
based on intermodule and intramodule 
relationships that are derived from the structural 
dependencies of modules obtained mainly 
through a static analysis of software. 

 
    These metrics can be broadly related to the 

principles concerning module compilability, 
extendibility, and testability (Principles P3, P4, and 
P5). It is obviously the case that a cohesive module 
that is just loosely coupled to other modules 
exhibits less of a dependency on the other 
modules. Consequently, its compilation, extension 
and testing will have less of an impact on the other 
modules. 

 

    In this context, it may be observed that 
characterizing modules primarily on the basis of 
cohesion among entities (that constitute a module) 
derived from structural dependencies (such as 
function-call and data dependency) penalizes 
modules in which the entities are grouped on the 
basis of similarity of purpose. (A case in point 
would be the java. until package of the Java 
platform.) The work by [29] supports this 
observation. 

 
4.       The modularity measure of [17]; modularization 

quality (MQ) measure and its variations [20], [18], 
[21], [22], [19]; coupling- cohesion, size, cyclic 
dependency, software complexity [measures for 
automated clustering. Several of the metrics 
proposed in [28] relate to principles of acyclic 
dependency (P6) and module size (P7), in 
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addition to P3, P4, and P5. The works by [19],  
consider the notion of omnipresent objects and 
clustering based on omnipresent objects. These 
are loosely related to the principles concerning 
the similarity of service (P1). 

 
5.      The coupling-cohesion metric based on 

information theoretic notions [30]. This metric 
measures coupling-cohesion patterns among 
modules on the basis of structural dependencies. 
This approach is different from the other 
coupling-cohesion measures listed in items 3 and 
4 above since those are count-based, whereas this 
metric is pattern based. 

 
 Like the other coupling-cohesion-based metrics 

mentioned in items 3 and 4, this metric is related to 
principles P3, P4, and P5. 

 
6.      Metric based on nonstructural information [31]. 

This metric measures cohesiveness and coupling 
of entities on the basis of mutual information in 
the information-theoretic sense. The authors have 
used the metric to guide a software clustering 
algorithm to arrive at a set of cohesive modules. 

 

     This metric is closely related to the Similarity of 
Purpose principles (P1). 

 
The metrics listed in items 1 though 5 above conform only 
partly to the principles outlined earlier in this section. As a 
case in point, the coupling-cohesion-based metrics certainly 
do not measure the similarity of purpose or the 
commonality of goals (principles P1). Perhaps the metric 
that comes closest to fulfilling the spirit of P1 is the one 
presented in [31]. These prior contributions certainly do not 
measure how effectively the principle that says that all 
intermodule function calls should be routed through the 
API’s of the modules (principles P2) is honored. These 
metrics also do not measure the extent to which a module 
encapsulates its internal (meaning non-API) functions and 
keeps them from getting exposed to the external world. All 
of the metrics listed above also do not provide a good 
measure of the consequences of cyclic dependencies 
between the modules, especially when the modules reside 
in layered architectures. 
3.2   Notation 
 
In the rest of this paper, we will denote a software system 
by the symbol S. 

 

 
 
4. Coupling-Based Structural Metrics 
 

            Starting with this section, we will now present a new 
set of metrics that cater to the principles enunciated 
in Section 3. We will begin with coupling-based 
structural metrics that provide various measures of 
the function-call traffic through the API’s of the 
modules in relation to the overall function-call 
traffic. 

 
4.1   Module Interaction Index 
 
This metric calculates how effectively a module’s API 
functions are used by the other modules in the system. 
Assume that a module has n functions{f1… fn}, of which 
the n1 API functions are given by the subset{fa1……..fan1}. 
Also assume that the system S has m1….m M modules. We 
now express Module Interaction Index (MII) for a given 
module m and for the entire software system S by 
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MII measures the extent to which a software system 
adheres to the module encapsulation principles P2 
presented in Section 3. Recall that these principles demand 
a well- designed module should expose a set of API 
functions through which other modules would interact. 
These API functions represent the services that the module 
has to offer. Since these API functions are meant to be used 
by the other modules, the internal functions of a module 
typically would not call the API functions of the module. 
Therefore, a non- API function of a module should not 
receive external calls to the maximum extent possible. In 
other words, ideally, all the external calls made to a module 
should be routed through the API functions only and the 
API functions should receive only external calls. 

Note that  for a module m 
increases as more and more intermediate module calls are 
routed through the API functions of m . We obviously have 
MII(m)->1 in the ideal case when all the intermodule calls 
are routed through the API functions only. By the same 
argument, MII(S) should also be close to 1 in the ideal case. 
Therefore, MII quantitatively measures the extent to which 
encapsulation related principles have been followed. 
Complex software systems sometimes employ what are 
known as driver modules to orchestrate the other modules. 
For a driver module, MII(m)=0 will likely be the case. The 
fact that a modularization effort must allow for such 
modules does not detract from the fact that the overall goal 
of a modularization effort should be to achieve as large a 
value as possible for MII while allowing for the possibility 
that some modules may not be able to contribute a fair 
share to the overall index. 
 
4.2   Non-API Function Closedness Index 
 
We now analyze the function calls from the point of view of 
non-API functions. Recall that the module encapsulation 
principles P2 also require minimization of non-API-based 
intermodule call traffic. Ideally, the non-API functions of a 
module should not expose themselves to the external 
world. In reality, however, a module may exist in a semi 
modularized state where there remain some residual 
intermodule function calls outside the API’s. (This is 
especially true of large legacy systems that have been 
partially modularized.) In this intermediate state, there may 
exist functions that participate in both intermodule and 
intramodule call traffic. We measure the extent of this 

traffic using a metric that we call “Non-API Function 
Closedness  Index,” or NC. 
 
Extending the notation presented in Section 3.2, let Fm, F 
am, and F nam represent the set of all functions, the API 
functions, and the non-API functions, respectively, in 
module m. Ideally, Fm = Fam +Fnam. But since, in reality, 
we may not be able to conclusively categorize a function as 
an API function or as a non-API function, this constraint 
would not be obeyed. The deviation from this constraint is 
measured by the metric 
 

 
 
Since a well-designed module does not expose the non-API 
functions to the external world and all functions are either  
API functions or non-API functions, |Fm | 
- |Fam| would be equal to |Fnam| Therefore, NC(m)=1 
for a well designed module. Otherwise, the value for this 
metric will be between 0 and 1.   
 
4.3 Api Function Usage Index 

 
This index determines what fraction of the API functions 
exposed by a module is being used by the other modules. 
When a big, monolithic module presents a large and 
versatile collection of API functions offering many different 
services, any one of the other modules may not need all of 
its services. That is, any single other module may end up 
using only a small part of the API. The intent of this index 
is to discourage the formation of such large, monolithic 
modules offering services of disparate nature and encou- 
rage modules that offer specific functionalities. Suppose 
that m has n API functions and let us say that nj number of 
API functions are called by another module mj. Also 
assume that there are k modules m1……mkthat call one or 
more of the API functions of module m. We may now 
formulate an API function usage index in the following 
manner: 
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where we assume that there are M apiu number of modules 
that have nonzero number of API functions. 
This metric characterizes, albeit indirectly and only 
partially, the software in accordance with the principles 
that come under the Similarity of Purpose (P1) rubric. For 
example, maximizing module coherence on the basis of 
commonality of goals does require that the modules not be 
monolithic pieces of software and ought not to provide 
disparate services. So making the modules more focused 
with regard to nature of services provided by the API 

functions would push the value of this metric close to its 
maximum, which is 1. However, it must be mentioned that 
since the metric does not actually analyze the specificity of 
the API functions, one could indeed conjure up a set of 
modules that are far from being goal-focused and that 
nonetheless yield a high value for this metric. So, this 
metric all by itself will not force a set of modules to become 
less monolithic. Nonetheless, when considered in 
conjunction with the other metrics, this metric can be 
expected to play a desirable role in the characterization of a 
set of modules. 

 
4.4 Implicit Dependency Index 
 
An insidious form of dependency between modules comes 
into existence when a function in one module writes to a 
global variable that is read by a function in another module. 
The same thing can happen if a function in one module 
writes to a file whose contents are important to the 
execution of another function in a different module. And 
the same thing happens when modules interact with one 
another through database files. We refer to such inter- 
module dependencies as implicit dependencies. 
Detecting implicit dependencies often requires a dynamic 
runtime analysis of the software. Such analysis is time 
consuming and difficult to carry out for complex business 
applications, especially applications that run into millions 
of lines of code and that involve business scenarios that can 
run into thousands, each potentially creating a different 
implicit dependency between the modules. Here, we 
propose a simple static-analysis-based metric to capture 
such dependencies. This metric, which we call the Implicit 
Dependency Index (IDI), is constructed by recording for 
each module the number of functions that write to global 
entities (such as variables, files, databases), with the proviso 
that such global entities are accessed by functions in other 
modules. We believe that the larger this count is in relation 
to the size of the intermodule traffic consisting of explicit 
function calls, the greater the insidiousness of implicit 
dependencies. 
For each module mi, we use the notation Dg (mi, mj),i not 
equal to j denote the number of dependencies created when 
a function in mi writes to a global entity that is 
subsequently accessed by some function in mj. Let Dg (mi, 
mj),i not equal to j denote the number of explicit calls made 

by all the functions in mi to any of the functions in mj. We 
claim that the larger Dg is in relation to Df, the worse the 
state of the software system. We therefore define the metric 
as follows: 

 
 
 
 
Where C(m) is the set of all modules that depend on the 
module m through implicit dependencies of the sort we 
have described in this section. 
With regard to where this metric belongs in the landscape 
of the principles we presented in Section 3, as we have said 
before, ideally all the interaction between modules must be 
through published API functions, implying that the 
number of implicit dependencies must be few and far 
between. Therefore, an ideal API-based system will make 
IDI equal to 1. Clearly, this is in conformance with the 
principles of module encapsulation (P2) that requires 
minimization of such implicit, non-API- based 
communications. 

 
5 Experiments 
 
Our experimental validation of the metrics is made 
challenging by the fact that it is difficult to find examples of 
non-object-oriented software that are modularized and that 
have published APIs for each of the modules. Many of the 
publicly available software systems with published APIs 
for the modules, such as Qt, GNOME/GTK+, wx Windows, 
JDK and many others, are object-oriented. Our metrics are 
not meant for such software. 
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We have therefore resorted to applying our metrics to 
software systems that are well-organized into directory 
structures (mostly on the basis of the services offered by the 
different directories). As we will explain later, it is 
relatively straightforward to label the functions in the 
different directories of these software systems as API or 
non-API functions on the basis of the relative frequencies of 
the call traffic from within a directory and from the other 
directories.10 The software systems we chose included a 
mix of open source systems and several proprietary 
business applications. These software systems are medium 
to large sized, Ranging from 160,000 to several million lines 
of C and C++ programs. The largest proprietary business 
application we tested the metrics on ran into 10 million 
lines of C code. But, for obvious reasons, we will limit our 
discussion in the rest of this section to the freely available 
software. 
The open source software systems chosen for reporting our 
experimental results in this section—MySQL, Apache, 
Mozilla, GCC, the Linux kernel, and PostgreSql—are highly 
regarded in academia and industry for their robustness and 
for the quality of code. For these software systems, we took 
the directory structure as examples of human-delineated 
modularization. Given the high quality of code 
organization, it should not come as a surprise that the 
major directories of these systems correspond to the 
different specialized services offered by the software 
systems. In all these systems, the different directories and 
subdirectories carry mnemonic names that hold clues to the 
services offered by those directories. 
Before calculating the metrics, the code was first analyzed 
by the open-source tool Sourcenav [47] that yielded a 
database containing the associations between the function 
definitions and the corresponding file names and also the 

function-call dependency information. Subsequently, we 
ran a set of tools written in Perl and Java to extract the 
metrics presented in this paper. These steps are depicted in 
Fig. 1a. The output produced by Sourcenav is summarized 
in Table . 
 

 
Modularity Assessment Tool Architecture. (a) Schematic 
diagram. (b) Concept extraction scheme. 
 

To verify the usefulness of our metrics, we not only need to 
show that the numbers look good for well-written code, we 
also need to demonstrate that the numbers yielded by the 
metrics become progressively worse as the code becomes 
increasingly disorganized. In order to make such a 
demonstration, starting from the original code, we created 
different modularized versions of the software. These 
versions correspond to the following  scenarios: 
1. Scenario 1 (Human). We considered the leaf nodes of 
the directory hierarchy of the original source code to be the 
most fine-grained functional modules. All the files (and 
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functions within) inside a leaf level directory were 
considered to belong to a single module—the module 
corresponding to the directory itself. In this manner, all leaf 
level directories formed the module set for the software. 
We call this module set the Developer Generated Module 
Set. 
2. Scenario 2 (Random). Functions were assigned 
randomly to modules in such a manner that we ended 
Table 
 

 
up with the same number of modules as in the developer 
generated module set. We call this the Randomly 
Generated Module Set. 
 

6 Concept Extraction 

 
In order to evaluate the CDM and CCM metrics, we must 
extract various domain concepts from the source code and 
create a frequency distribution of the concepts for each 
module. The concept extraction process is shown in Fig. 1b. 
The extraction process takes an input file containing a set of 
business concept names and the associated terms or key- 
words that can uniquely identify a business concept. This 
file in Fig. 1b is currently created manually. The Keyword 
Extractor component takes these keywords as regular 
expressions and computes a concept frequency distribution 
for each function by counting the occurrences of these 
keywords from function signature, return types, and data 
structures used by the function. However, function calls are 
not considered in the counting process since they can skew 
the concept distribution frequencies. For example, suppose 
that a customer-update function fcustomer calls an account- 
handling function faccount several times. If we look for the 
concept account in the function call faccount(called by the 
function f customer), several occurrences of the concept 

 
Comparison of metric values for Human and random 
modularization of some systems. (a) httpd-2.0.53 metric 
values. (b) Mysql metric values. 
account will be found. If the number of occurrences is 
relatively high, account might appear (incorrectly) as the 
dominating concept in fcustomer. 

 
7 Experimental Results 

 
The first set of experimental results show how the metric 
values change when the modularization scenario is 
changed from the human-supplied to random. Fig. 2 shows 
the results obtained for the four open-source applications. 
The second sets of experimental results are a comparative 
presentation of the metric values for different versions of 
the software systems. Fig. 3 shows the metric values for two 
different versions of Apache and Mozilla software. 
The CDM and CCM metrics depend on the relative 
frequencies of the concepts in the different modules. It is 
obviously not feasible to show these relative frequencies 
and how these frequencies change with changes in the 
modularization for all the concepts. So, we arbitrarily chose 
a couple of concepts, user authentication for the Apache 
software and parser for MySQL, to show the distribution of 
their relative frequencies in the original software and in the 
randomized version. These are plotted in Fig. 
 

8 Conclusion 
 
We have enunciated a set of design principles for code 
modularization and proposed a set of metrics that 
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characterize software in relation to those principles. 
Although many of the principles carry intuitive plausibility, 
several of them are supported by the research literature 
published to date. Our proposed metrics seek to 
characterize a body of software according to the enunciated 
principles. The structural metrics are driven by the notion 
of API—a notion central to modern software development. 
Other metrics based on notions such as size-roundedness, 
size-uniformity, operational efficiency in layered 
architectures, and similarity of purpose play important 
supporting roles. These supporting metrics are essential 
since otherwise it would be possible to declare a malformed 
software system as being well-modularized. As an extreme 
case in point, putting all of the code in a single module 
would yield high values for some of the API-based metrics, 
since the modularization achieved would be functionally 
correct (but highly unacceptable). 
We reported on two types of experiments to validate the 
metrics. In one type, we applied the metrics to two different 
versions of the same software system. Our experiments 
confirmed that our metrics were able to detect the 
improvement in modularization in keeping with the 
opinions expressed in the literature as to which version is 
considered to be better. (See Fig. ) 
The other type of experimental validation consisted of 
randomizing a well-modularized body of software and 
seeing how the value of the metrics changed. This 
randomization very roughly simulated what sometimes can 
happen to a large industrial software system as new 
features are added to it and as it evolves to meet the 
changing hardware requirements. For these experiments, 
we chose open-source software systems. For these systems, 
we took for modularization the directory structures created 
by the developers of the software. It was interesting to see 
how the changes in the values of the metrics confirmed this 
process of code disorganization. 
With regard to our future work, in addition to the empirical 
support presented in this paper, we would also like to 
validate them theoretically. As we mentioned in Section 2, 
theoretical validation implies conformance to a set of 
agreed-upon principles that are usually stated in the form 
of a theoretical framework. Again as mentioned in Section 
2, the more notable of the frameworks that have been 
proposed over the years for software metrics validation 
include those by Kitchen ham et al. [10] (see also Fenton 
and Pfleeger [11]) and Briand et al. [8], [13]. If we also 
include the set of desirable properties for metrics proposed 
by Weyuker [6], that gives us four “frameworks” as 
possible approaches for the theoretical validation of our 
metrics. 
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